A Discriminative Data-Dependent Mixture-Model Approach for Multiple Instance Learning in Image Classification
نویسندگان
چکیده
Multiple Instance Learning (MIL) has been widely used in various applications including image classification. However, existing MIL methods do not explicitly address the multi-target problem where the distributions of positive instances are likely to be multi-modal. This strongly limits the performance of multiple instance learning in many real world applications. To address this problem, this paper proposes a novel discriminative data-dependent mixture-model method for multiple instance learning (MM-MIL) approach in image classification. The new method explicitly handles the multi-target problem by introducing a data-dependent mixture model, which allows positive instances to come from different clusters in a flexible manner. Furthermore, the kernelized representation of the proposed model allows effective and efficient learning in high dimensional feature space. An extensive set of experimental results demonstrate that the proposed new MM-MIL approach substantially outperforms several state-of-art MIL algorithms on benchmark datasets.
منابع مشابه
Learning from text and images: generative and discriminative models for partially labeled data
Image annotation is a challenging task of assigning keywords to an image given the content of an image. It has a variety of applications in multi-media data-mining and computer vision. Traditional machine learning approaches to image annotation require large amounts of labeled data. This requirement is often unrealistic, as obtaining labeled data is, in general, expensive and time consuming. Ho...
متن کاملTable of Contents List of Tables...................................
Image annotation is a challenging task of assigning keywords to an image given the content of an image. It has a variety of applications in multi-media data-mining and computer vision. Traditional machine learning approaches to image annotation require large amounts of labeled data. This requirement is often unrealistic, as obtaining labeled data is, in general, expensive and time consuming. Ho...
متن کاملAdaptive Knowledge Transfer for Multiple Instance Learning in Image Classification
Multiple Instance Learning (MIL) is a popular learning technique in various vision tasks including image classification. However, most existing MIL methods do not consider the problem of insufficient examples in the given target category. In this case, it is difficult for traditional MIL methods to build an accurate classifier due to the lack of training examples. Motivated by the empirical suc...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012